Intuitionistic Logic with a “Definitely” Operator

نویسنده

  • Peter Mott
چکیده

This paper introduces a logic ILED derived from standard intuitionistic predicate logic by adding two operators Dφ for “Definitely φ” and ~φ for “Experience rejects φ”. A further negation ¬φ =def (φ→⊥) ∨ ~φ , which we call real negation, is introduced. Real negation is like intuitionistic negation when there are no D-operators but deviates when there are. We see that Dφ ↔ φ is valid but ¬Dφ → ¬φ is not and hence that contraposition fails for real negation. We give a semantics for this logic, axiomatise it and prove the axiomatisation complete. Finally we show that real negation behaves as standard intuitionistic negation within D-free contexts. The logic ILED is proposed as an extension of intuitionistic logic apt for use as a general logic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intuitionistic Logic with a “ Definitely ” Operator by Peter Mott January 1997

This paper introduces a logic ILED derived from standard intuitionistic sentence logic by adding two operators Dϕ for " Definitely ϕ " and ~ϕ for " Experience rejects ϕ ". A further negation ¬ϕ = def (ϕ→⊥) ∨ ~ϕ , which we call real negation, is introduced. Real negation is like intuitionistic negation when there are no D-operators but deviates when there are. We see that Dϕ ↔ ϕ is valid but ¬Dϕ...

متن کامل

Power harmonic aggregation operator with trapezoidal intuitionistic fuzzy numbers for solving MAGDM problems

Trapezoidal intuitionistic fuzzy numbers (TrIFNs) express abundant and flexible information in a suitable manner and  are very useful to depict the decision information in the procedure of decision making. In this paper, some new aggregation operators, such as, trapezoidal intuitionistic fuzzy weighted power harmonic mean (TrIFWPHM) operator, trapezoidal intuitionistic fuzzy ordered weighted po...

متن کامل

Trapezoidal intuitionistic fuzzy prioritized aggregation operators and application to multi-attribute decision making

In some multi-attribute decision making (MADM) problems, various relationships among the decision attributes should be considered. This paper investigates the prioritization relationship of attributes in MADM with trapezoidal intuitionistic fuzzy numbers (TrIFNs). TrIFNs are a special intuitionistic fuzzy set on a real number set and have the better capability to model ill-known quantities. Fir...

متن کامل

AN ALGEBRAIC STRUCTURE FOR INTUITIONISTIC FUZZY LOGIC

In this paper we extend the notion of  degrees of membership and non-membership of intuitionistic fuzzy sets to lattices and  introduce a residuated lattice with appropriate operations to serve as semantics of intuitionistic fuzzy logic. It would be a step forward to find an algebraic counterpart for intuitionistic fuzzy logic. We give the main properties of the operations defined and prove som...

متن کامل

A modal logic amalgam of classical and intuitionistic propositional logic

We present a modal extension of classical propositional logic in which intuitionistic propositional logic is mirrored by means of the modal operator. In this sense, the modal extension combines classical and intuitionistic propositional logic avoiding the collapsing problem. Adopting ideas from a recent paper (S. Lewitzka, A denotational semantics for a Lewis-style modal system close to S1, 201...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997